Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(5): 699-710, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386885

RESUMO

Campylobacter jejuni is a Gram-negative pathogenic bacterium commonly found in chickens and is the leading cause of human diarrheal disease worldwide. The various serotypes of C. jejuni produce structurally distinct capsular polysaccharides (CPSs) on the exterior surfaces of the cell wall. The capsular polysaccharide from C. jejuni serotype HS:5 is composed of a repeating sequence of d-glycero-d-manno-heptose and d-glucitol-6-phosphate. We previously defined the pathway for the production of d-glycero-d-manno-heptose in C. jejuni. Here, we elucidate the biosynthetic pathway for the assembly of cytidine diphosphate (CDP)-6-d-glucitol by the combined action of two previously uncharacterized enzymes. The first enzyme catalyzes the formation of CDP-6-d-fructose from cytidine triphosphate (CTP) and d-fructose-6-phosphate. The second enzyme reduces CDP-6-d-fructose with NADPH to generate CDP-6-d-glucitol. Using sequence similarity network (SSN) and genome neighborhood network (GNN) analyses, we predict that these pairs of proteins are responsible for the biosynthesis of CDP-6-d-glucitol and/or CDP-d-mannitol in the lipopolysaccharides (LPSs) and capsular polysaccharides in more than 200 other organisms. In addition, high resolution X-ray structures of the second enzyme are reported, which provide novel insight into the manner in which an open-chain nucleotide-linked sugar is harbored in an active site cleft.


Assuntos
Campylobacter jejuni , Animais , Humanos , Sorbitol/metabolismo , Galinhas/metabolismo , Polissacarídeos/metabolismo , Cistina Difosfato/metabolismo , Frutose/metabolismo , Polissacarídeos Bacterianos/metabolismo
2.
Biochemistry ; 62(20): 3012-3019, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37737649

RESUMO

Campylobacter jejuni is the leading cause of food poisoning in North America and Europe. The exterior surface of this bacterium is coated with a capsular polysaccharide (CPS) which enables adherence to the host epithelial cells and evasion of the host immune system. Many strains of C. jejuni can be differentiated from one another by changes in the sequence of the carbohydrates found within the CPS. The CPS structures of serotypes HS:15 and HS:41 of C. jejuni were chemically characterized and found to contain an l-arabinofuranoside moiety in the repeating CPS sequence. Sequence similarity and genome neighborhood networks were used to identify the putative gene cluster within the HS:15 serotype for the biosynthesis of the l-arabinofuranoside fragment. The first enzyme (HS:15.18) in the pathway was found to catalyze the NAD+-dependent oxidation of UDP-α-d-glucose to UDP-α-d-glucuronate, while the second enzyme (HS:15.19) catalyzes the NAD+-dependent decarboxylation of this product to form UDP-α-d-xylose. The UDP-α-d-xylose is then epimerized at C4 by the third enzyme (HS:15.17) to produce UDP-ß-l-arabinopyranoside. In the last step, HS:15.16 catalyzes the FADH2-dependent conversion of UDP-ß-l-arabinopyranoside into UDP-ß-l-arabinofuranoside. The UDP-ß-l-arabinopyranoside mutase catalyzed reaction was further interrogated by measurement of a positional isotope exchange reaction within [18O]-UDP-ß-l-arabinopyranoside.


Assuntos
Campylobacter jejuni , NAD/metabolismo , Xilose/metabolismo , Polissacarídeos/metabolismo , Difosfato de Uridina/metabolismo
3.
Biochemistry ; 61(21): 2431-2440, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214481

RESUMO

Campylobacter jejuni is a Gram-negative, pathogenic bacterium found in the intestinal tracts of chickens and many other farm animals. C. jejuni infection results in campylobacteriosis, which can cause nausea, diarrhea, fever, cramps, and death. The surface of the bacterium is coated with a thick layer of sugar known as the capsular polysaccharide. This highly modified polysaccharide contains an unusual d-glucuronamide moiety in serotypes HS:2 and HS:19. Previously, we have demonstrated that a phosphorylated glucuronamide intermediate is synthesized in C. jejuni NCTC 11168 (serotype HS:2) by cumulative reactions of three enzymes: Cj1441, Cj1436/Cj1437, and Cj1438. Cj1441 functions as a UDP-d-glucose dehydrogenase to make UDP-d-glucuronate; then Cj1436 or Cj1437 catalyzes the formation of ethanolamine phosphate or S-serinol phosphate, respectively, and finally Cj1438 catalyzes amide bond formation using d-glucuronate and either ethanolamine phosphate or S-serinol phosphate. Here, we investigated the final d-glucuronamide-modifying enzyme, Cj1435. Cj1435 was shown to catalyze the hydrolysis of the phosphate esters from either the d-glucuronamide of ethanolamine phosphate or S-serinol phosphate. Kinetic constants for a range of substrates were determined, and the stereoselectivity of the enzyme for the hydrolysis of glucuronamide of S-serinol phosphate was established using 31P nuclear magnetic resonance spectroscopy. A bioinformatic analysis of Cj1435 reveals it to be a member of the HAD phosphatase superfamily with a unique DXXE catalytic motif.


Assuntos
Campylobacter jejuni , Animais , Monoéster Fosfórico Hidrolases , Galinhas , Glucuronatos , Polissacarídeos , Fosfatos , Difosfato de Uridina
4.
Biochemistry ; 61(2): 117-124, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34951304

RESUMO

Campylobacter jejuni is a Gram-negative, pathogenic bacterium that is commensal in poultry. Infection of C. jejuni leads to campylobacteriosis, the leading cause of gastroenteritis worldwide. Coating the surface of C. jejuni is a thick layer of sugar molecules known as the capsular polysaccharide (CPS). The CPS of C. jejuni NCTC 11168 (HS:2) is composed of a repeating unit of d-glycero-l-gluco-heptose, d-glucuronate, d-N-acetyl-galactosamine, and d-ribose. The glucuronate is further amidated with either ethanolamine or serinol, but it is unknown how this new amide bond is formed. Sequence similarity networks were used to identify a candidate enzyme for amide bond formation during the biosynthesis of the CPS of C. jejuni. The C-terminal domain of Cj1438 was shown to catalyze amide bond formation using MgATP and d-glucuronate in the presence of either ethanolamine phosphate or (S)-serinol phosphate. Product formation was verified using 31P NMR spectroscopy and ESI mass spectrometry, and the kinetic constants determined using a coupled enzyme assay by measuring the rate of ADP formation. This work represents the first functional characterization of an ATP-dependent amidoligase in the formation of amide bonds in the biosynthetic pathway for the assembly of the CPS in C. jejuni.


Assuntos
Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Polissacarídeos Bacterianos/metabolismo , Trifosfato de Adenosina/metabolismo , Vias Biossintéticas , Infecções por Campylobacter/microbiologia , Humanos
6.
Biochemistry ; 60(37): 2836-2843, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34505775

RESUMO

Campylobacter jejuni is a Gram-negative, pathogenic bacterium that causes campylobacteriosis, a form of gastroenteritis. C. jejuni is the most frequent cause of food-borne illness in the world, surpassing Salmonella and E. coli. Coating the surface of C. jejuni is a layer of sugar molecules known as the capsular polysaccharide that, in C. jejuni NCTC 11168, is composed of a repeating unit of d-glycero-l-gluco-heptose, d-glucuronic acid, d-N-acetyl-galactosamine, and d-ribose. The d-glucuronic acid moiety is further amidated with either serinol or ethanolamine. It is unknown how these modifications are synthesized and attached to the polysaccharide. Here, we report the catalytic activities of two previously uncharacterized, pyridoxal phosphate (PLP)-dependent enzymes, Cj1436 and Cj1437, from C. jejuni NCTC 11168. Using a combination of mass spectrometry and nuclear magnetic resonance, we determined that Cj1436 catalyzes the decarboxylation of l-serine phosphate to ethanolamine phosphate. Cj1437 was shown to catalyze the transamination of dihydroxyacetone phosphate to (S)-serinol phosphate in the presence of l-glutamate. The probable routes to the ultimate formation of the glucuronamide substructures in the capsular polysaccharides of C. jejuni are discussed.


Assuntos
Cápsulas Bacterianas/enzimologia , Cápsulas Bacterianas/metabolismo , Campylobacter jejuni/enzimologia , Cápsulas Bacterianas/genética , Proteínas de Bactérias/química , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/metabolismo , Metabolismo dos Carboidratos , Heptoses/biossíntese , Polissacarídeos/biossíntese , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Fosfato de Piridoxal/metabolismo
7.
Biochemistry ; 60(38): 2875-2887, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34494832

RESUMO

The G-type nerve agents, sarin (GB), soman (GD), and cyclosarin (GF), are among the most toxic compounds known. Much progress has been made in evolving the enzyme phosphotriesterase (PTE) from Pseudomonas diminuta for the decontamination of the G-agents; however, the extreme toxicity of the G-agents makes the use of substrate analogues necessary. Typical analogues utilize a chromogenic leaving group to facilitate high-throughput screening, and substitution of an O-methyl for the P-methyl group found in the G-agents, in an effort to reduce toxicity. Till date, there has been no systematic evaluation of the effects of these substitutions on catalytic activity, and the presumed reduction in toxicity has not been tested. A series of 21 G-agent analogues, including all combinations of O-methyl, p-nitrophenyl, and thiophosphate substitutions, have been synthesized and evaluated for their ability to unveil the stereoselectivity and catalytic activity of PTE variants against the authentic G-type nerve agents. The potential toxicity of these analogues was evaluated by measuring the rate of inactivation of acetylcholinesterase (AChE). All of the substitutions reduced inactivation of AChE by more than 100-fold, with the most effective being the thiophosphate analogues, which reduced the rate of inactivation by about 4-5 orders of magnitude. The analogues were found to reliably predict changes in catalytic activity and stereoselectivity of the PTE variants and led to the identification of the BHR-30 variant, which has no apparent stereoselectivity against GD and a kcat/Km of 1.4 × 106, making it the most efficient enzyme for GD decontamination reported till date.


Assuntos
Compostos Organofosforados/toxicidade , Sarina/análogos & derivados , Soman/análogos & derivados , Acetilcolinesterase/química , Catálise , Substâncias para a Guerra Química/química , Hidrólise , Agentes Neurotóxicos , Organofosfatos/química , Compostos Organofosforados/química , Compostos Organotiofosforados/química , Hidrolases de Triester Fosfórico/química , Sarina/química , Sarina/toxicidade , Soman/química , Soman/toxicidade
8.
Biochemistry ; 59(46): 4463-4469, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33167613

RESUMO

The phosphotriesterase from Sphingobium sp. TCM1 (Sb-PTE) is notable for its ability to hydrolyze a broad spectrum of organophosphate triesters, including organophosphorus flame retardants and plasticizers such as triphenyl phosphate and tris(2-chloroethyl) phosphate that are not substrates for other enzymes. This enzyme is also capable of hydrolyzing any one of the three ester groups attached to the central phosphorus core. The enantiomeric isomers of 1,1'-bi-2-naphthol (BINOL) have become among the most widely used chiral auxiliaries for the chemical synthesis of chiral carbon centers. PTE was tested for its ability to hydrolyze a series of biaryl phosphate esters, including mono- and bis-phosphorylated BINOL derivatives and cyclic phosphate triesters. Sb-PTE was shown to be able to catalyze the hydrolysis of the chiral phosphate triesters with significant stereoselectivity. The catalytic efficiency, kcat/Km, of Sb-PTE toward the test phosphate triesters ranged from ∼10 to 105 M-1 s-1. The product ratios and stereoselectivities were determined for four pairs of phosphorylated BINOL derivatives.


Assuntos
Naftóis/química , Hidrolases de Triester Fosfórico/metabolismo , Sphingomonadaceae/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Hidrólise , Cinética , Naftóis/metabolismo , Fosfatos/química , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/genética , Estereoisomerismo , Especificidade por Substrato
9.
Biochemistry ; 59(48): 4573-4580, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33231431

RESUMO

Non-typhoidal Salmonella are capable of colonizing livestock and humans, where they can progressively cause disease. Previously, a library of targeted single-gene deletion mutants of Salmonella enterica serotype Typhimurium was inoculated to ligated ileal loops in calves to identify genes under selection. Of those genes identified, a cluster of genes is related to carbohydrate metabolism and transportation. It is proposed that an incoming carbohydrate is first phosphorylated by a phosphoenolpyruvate-dependent phosphotransferase system. The metabolite is further phosphorylated by the kinase STM3781 and then cleaved by the aldolase STM3780. STM3780 is functionally annotated as a class II fructose-bisphosphate aldolase. The aldolase was purified to homogeneity, and its aldol condensation activity with a range of aldehydes was determined. In the condensation reaction, STM3780 was shown to catalyze the abstraction of the pro-S hydrogen from C3 of dihydroxyacetone and subsequent formation of a carbon-carbon bond with S stereochemistry at C3 and R stereochemistry at C4. The best aldehyde substrate was identified as l-threouronate. Surprisingly, STM3780 was also shown to catalyze the condensation of two molecules of dihydroxyacetone phosphate to form the branched carbohydrate dendroketose bisphosphate.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Genes Bacterianos , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Animais , Biocatálise , Metabolismo dos Carboidratos , Carboidratos/química , Bovinos , Doenças dos Bovinos/microbiologia , Medição da Troca de Deutério , Fosfato de Di-Hidroxiacetona/metabolismo , Humanos , Família Multigênica , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonelose Animal/microbiologia , Sorogrupo , Estereoisomerismo , Especificidade por Substrato
10.
Biochemistry ; 59(33): 3038-3043, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32786401

RESUMO

The COVID-19 pandemic threatens to overwhelm healthcare systems around the world. The only current FDA-approved treatment, which directly targets the virus, is the ProTide prodrug remdesivir. In its activated form, remdesivir prevents viral replication by inhibiting the essential RNA-dependent RNA polymerase. Like other ProTide prodrugs, remdesivir contains a chiral phosphorus center. The initial selection of the (SP)-diastereomer for remdesivir was reportedly due to the difficulty in producing the pure (RP)-diastereomer of the required precursor. However, the two currently known enzymes responsible for the initial activation step of remdesivir are each stereoselective and show differential tissue distribution. Given the ability of the COVID-19 virus to infect a wide array of tissue types, inclusion of the (RP)-diastereomer may be of clinical significance. To help overcome the challenge of obtaining the pure (RP)-diastereomer of remdesivir, we have developed a novel chemoenzymatic strategy that utilizes a stereoselective variant of the phosphotriesterase from Pseudomonas diminuta to enable the facile isolation of the pure (RP)-diastereomer of the chiral precursor for the chemical synthesis of the (RP)-diastereomer of remdesivir.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/síntese química , Monofosfato de Adenosina/síntese química , Alanina/síntese química , Betacoronavirus , COVID-19 , Caulobacteraceae/enzimologia , Infecções por Coronavirus , Humanos , Estrutura Molecular , Pandemias , Hidrolases de Triester Fosfórico/química , Pneumonia Viral , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2 , Replicação Viral/efeitos dos fármacos
11.
Biochemistry ; 59(12): 1273-1288, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32167750

RESUMO

Organophosphate flame retardants are used to inhibit combustion and increase plasticity in plastics and durable foams. While not neurotoxic, these compounds are potential carcinogens, endocrine disrupters, and developmental toxins. The phosphotriesterase from Sphingobium sp. TCM1 (Sb-PTE) is unique among phosphotriesterase enzymes for its ability to hydrolyze these compounds and its ability to hydrolyze any one of the three different ester bonds within a given substrate. In some cases, the extent of hydrolysis of a methyl ester exceeds that of a p-nitrophenyl ester within a single substrate. There is a stereochemical component to this hydrolysis where the two enantiomers of chiral substrates give different product ratios. To investigate the stereoselectivity for the product distribution of Sb-PTE, a series of 24 phosphotriesters were synthesized with all possible combinations of methyl, cyclohexyl, phenyl, and p-nitrophenyl esters. Prochiral compounds were made chiral by differential isotopic labeling using a chemo/enzymatic strategy, which allowed the differentiation of hydrolysis for each ester in all but two compounds. The rate equations for this unique enzymatic mechanism were derived; the product ratios were determined for each substrate, and the individual kinetic constants for hydrolysis of each ester within each substrate were measured. The findings are consistent with the rate-limiting step for substrate hydrolysis catalyzed by Sb-PTE being the formation of a phosphorane-like intermediate and the kinetic constants and product ratios being dictated by a combination of transition state energies, inductive effects, and stereochemical constraints.


Assuntos
Poluentes Ambientais/metabolismo , Retardadores de Chama/metabolismo , Organofosfatos/metabolismo , Hidrolases de Triester Fosfórico/metabolismo , Sphingomonadaceae/enzimologia , Biocatálise , Biodegradação Ambiental , Poluentes Ambientais/toxicidade , Retardadores de Chama/toxicidade , Hidrólise , Cinética , Organofosfatos/toxicidade , Estereoisomerismo , Especificidade por Substrato
12.
Biochemistry ; 58(29): 3204-3211, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31268686

RESUMO

Nucleoside analogues are among the most common medications given for the treatment of viral infections and cancers. The therapeutic effectiveness of nucleoside analogues can be dramatically improved by phosphorylation. The ProTide approach was developed using a phosphorylated nucleoside that is masked by esterification with an amino acid and phenol forming a chiral phosphorus center. The biological activity of the ProTides depends, in part, on the stereochemistry at phosphorus, and thus, it is imperative that efficient methods be developed for the chemical synthesis and isolation of diastereomerically pure ProTides. Chiral ProTides are often synthesized by direct displacement of a labile phenol (p-nitrophenol or pentafluorophenol) from a chiral phosphoramidate precursor with the appropriate nucleoside analogue. The ability to produce these chiral products is dictated by the synthesis of the chiral phosphoramidate precursors. The enzyme phosphotriesterase (PTE) from Pseudomonas diminuta is well-known for its high stereoselectivity and broad substrate profile. Screening PTE variants from enzyme evolution libraries enabled the identification of variants of PTE that can stereoselectively hydrolyze the chiral phosphoramidate precursors. The variant G60A-PTE exhibits a 165-fold preference for hydrolysis of the RP isomer, while the variant In1W-PTE has a 1400-fold preference for hydrolysis of the SP isomer. Using these mutants of PTE, the SP and RP isomers were isolated on a preparative scale with no detectable contamination of the opposite isomer. Combining the simplicity of the enzymatic resolution of the precursor with the latest synthetic strategy will facilitate the production of diastereometrically pure nucleotide phosphoramidate prodrugs.


Assuntos
Antivirais/química , Antivirais/metabolismo , Hidrolases de Triester Fosfórico/metabolismo , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Antivirais/farmacologia , Catálise/efeitos dos fármacos , Cinética , Pró-Fármacos/farmacologia , Estereoisomerismo
13.
Biochemistry ; 58(31): 3340-3353, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31322866

RESUMO

The ydj gene cluster is found in 80% of sequenced Escherichia coli genomes and other closely related species in the human microbiome. On the basis of the annotations of the enzymes located in this cluster, it is expected that together they catalyze the catabolism of an unknown carbohydrate. The focus of this investigation is on YdjI, which is in the ydj gene cluster of E. coli K-12. It is predicted to be a class II aldolase of unknown function. Here we describe a structural and functional characterization of this enzyme. YdjI catalyzes the hydrogen/deuterium exchange of the pro-S hydrogen at C3 of dihydroxyacetone phosphate (DHAP). In the presence of DHAP, YdjI catalyzes an aldol condensation with a variety of aldo sugars. YdjI shows a strong preference for higher-order (seven-, eight-, and nine-carbon) monosaccharides with specific hydroxyl stereochemistries and a negatively charged terminus (carboxylate or phosphate). The best substrate is l-arabinuronic acid with an apparent kcat of 3.0 s-1. The product, l-glycero-l-galacto-octuluronate-1-phosphate, has a kcat/Km value of 2.1 × 103 M-1 s-1 in the retro-aldol reaction with YdjI. This is the first recorded synthesis of l-glycero-l-galacto-octuluronate-1-phosphate and six similar carbohydrates. The crystal structure of YdjI, determined to a nominal resolution of 1.75 Å (Protein Data Bank entry 6OFU ), reveals unusual positions for two arginine residues located near the active site. Computational docking was utilized to distinguish preferable binding orientations for l-glycero-l-galacto-octuluronate-1-phosphate. These results indicate a possible alternative binding orientation for l-glycero-l-galacto-octuluronate-1-phosphate compared to that observed in other class II aldolases, which utilize shorter carbohydrate molecules.


Assuntos
Aldeído Liases/química , Aldeído Liases/metabolismo , Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Biocatálise , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
14.
Biochemistry ; 58(10): 1388-1399, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30742415

RESUMO

A combination of bioinformatics, steady-state kinetics, and NMR spectroscopy has revealed the catalytic functions of YcjQ, YcjS, and YcjR from the ycj gene cluster in Escherichia coli K-12. YcjS was determined to be a 3-keto-d-glucoside dehydrogenase with a kcat = 22 s-1 and kcat/ Km = 2.3 × 104 M-1 s-1 for the reduction of methyl α-3-keto-d-glucopyranoside at pH 7.0 with NADH. YcjS also exhibited catalytic activity for the NAD+-dependent oxidation of d-glucose, methyl ß-d-glucopyranoside, and 1,5-anhydro-d-glucitol. YcjQ was determined to be a 3-keto-d-guloside dehydrogenase with kcat = 18 s-1 and kcat/ Km = 2.0 × 103 M-1 s-1 for the reduction of methyl α-3-keto-gulopyranoside. This is the first reported dehydrogenase for the oxidation of d-gulose. YcjQ also exhibited catalytic activity with d-gulose and methyl ß-d-gulopyranoside. The 3-keto products from both dehydrogenases were found to be extremely labile under alkaline conditions. The function of YcjR was demonstrated to be a C4 epimerase that interconverts 3-keto-d-gulopyranosides to 3-keto-d-glucopyranosides. These three enzymes, YcjQ, YcjR, and YcjS, thus constitute a previously unrecognized metabolic pathway for the transformation of d-gulosides to d-glucosides via the intermediate formation of 3-keto-d-guloside and 3-keto-d-glucoside.


Assuntos
Proteínas de Escherichia coli/metabolismo , Glucose Desidrogenase/genética , Glucosídeos/metabolismo , Catálise , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glucose/química , Glucose Desidrogenase/metabolismo , Glucosídeos/genética , Cinética , Família Multigênica , Oxirredução , Oxirredutases/metabolismo , Especificidade por Substrato
15.
Biochemistry ; 58(9): 1246-1259, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30730705

RESUMO

Organophosphorus flame retardants are stable toxic compounds used in nearly all durable plastic products and are considered major emerging pollutants. The phosphotriesterase from Sphingobium sp. TCM1 ( Sb-PTE) is one of the few enzymes known to be able to hydrolyze organophosphorus flame retardants such as triphenyl phosphate and tris(2-chloroethyl) phosphate. The effectiveness of Sb-PTE for the hydrolysis of these organophosphates appears to arise from its ability to hydrolyze unactivated alkyl and phenolic esters from the central phosphorus core. How Sb-PTE is able to catalyze the hydrolysis of the unactivated substituents is not known. To interrogate the catalytic hydrolysis mechanism of Sb-PTE, the pH dependence of the reaction and the effects of changing the solvent viscosity were determined. These experiments were complemented by measurement of the primary and secondary 18-oxygen isotope effects on substrate hydrolysis and a determination of the effects of changing the p Ka of the leaving group on the magnitude of the rate constants for hydrolysis. Collectively, the results indicated that a single group must be ionized for nucleophilic attack and that a separate general acid is not involved in protonation of the leaving group. The Brønsted analysis and the heavy atom kinetic isotope effects are consistent with an early associative transition state with subsequent proton transfers not being rate limiting. A novel binding mode of the substrate to the binuclear metal center and a catalytic mechanism are proposed to explain the unusual ability of Sb-PTE to hydrolyze unactivated esters from a wide range of organophosphate substrates.


Assuntos
Organofosfatos/metabolismo , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/metabolismo , Sphingomonadaceae/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Deutério/química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Organofosfatos/química , Paraoxon/química , Paraoxon/metabolismo , Solventes/química , Viscosidade
16.
Biochemistry ; 58(9): 1236-1245, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30715856

RESUMO

Non-typhoidal Salmonella can colonize the gastrointestinal system of cattle and can also cause significant food-borne disease in humans. The use of a library of single-gene deletions in Salmonella enterica serotype Typhimurium allowed identification of several proteins that are under selection in the intestine of cattle. STM2437 ( yfeJ) encodes one of these proteins, and it is currently annotated as a type I glutamine amidotransferase. STM2437 was purified to homogeneity, and its catalytic properties with a wide range of γ-glutamyl derivatives were determined. The catalytic efficiency toward the hydrolysis of l-glutamine was extremely weak with a kcat/ Km value of 20 M-1 s-1. γ-l-Glutamyl hydroxamate was identified as the best substrate for STM2437, with a kcat/ Km value of 9.6 × 104 M-1 s-1. A homology model of STM2437 was constructed on the basis of the known crystal structure of a protein of unknown function (Protein Data Bank entry 3L7N ), and γ-l-glutamyl hydroxamate was docked into the active site based on the binding of l-glutamine in the active site of carbamoyl phosphate synthetase. Acivicin was shown to inactivate the enzyme by reaction with the active site cysteine residue and the subsequent loss of HCl. Mutation of Cys91 to serine completely abolished catalytic activity. Inactivation of STM2437 did not affect the ability of this strain to colonize mice, but it inhibited the growth of S. enterica Typhimurium in bacteriologic media containing γ-l-glutamyl hydroxamate.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , Salmonelose Animal/microbiologia , Animais , Proteínas de Bactérias/genética , Bovinos , Doenças dos Bovinos/microbiologia , Colite/microbiologia , Colite/veterinária , Ativação Enzimática , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Glutamatos/metabolismo , Glutamatos/farmacologia , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Hidroxilamina/farmacologia , Isoxazóis/farmacologia , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Transferases de Grupos Nitrogenados/genética , Conformação Proteica , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Especificidade por Substrato
17.
Biochemistry ; 57(19): 2857-2867, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29684280

RESUMO

The substrate profiles for three uncharacterized enzymes (YcjM, YcjT, and YcjU) that are expressed from a cluster of 12 genes ( ycjM-W and ompG) of unknown function in Escherichia coli K-12 were determined. Through a comprehensive bioinformatic and steady-state kinetic analysis, the catalytic function of YcjT was determined to be kojibiose phosphorylase. In the presence of saturating phosphate and kojibiose (α-(1,2)-d-glucose-d-glucose), this enzyme catalyzes the formation of d-glucose and ß-d-glucose-1-phosphate ( kcat = 1.1 s-1, Km = 1.05 mM, and kcat/ Km = 1.12 × 103 M-1 s-1). Additionally, it was also shown that in the presence of ß-d-glucose-1-phosphate, YcjT can catalyze the formation of other disaccharides using 1,5-anhydro-d-glucitol, l-sorbose, d-sorbitol, or l-iditol as a substitute for d-glucose. Kojibiose is a component of cell wall lipoteichoic acids in Gram-positive bacteria and is of interest as a potential low-calorie sweetener and prebiotic. YcjU was determined to be a ß-phosphoglucomutase that catalyzes the isomerization of ß-d-glucose-1-phosphate ( kcat = 21 s-1, Km = 18 µM, and kcat/ Km = 1.1 × 106 M-1 s-1) to d-glucose-6-phosphate. YcjU was also shown to exhibit catalytic activity with ß-d-allose-1-phosphate, ß-d-mannose-1-phosphate, and ß-d-galactose-1-phosphate. YcjM catalyzes the phosphorolysis of α-(1,2)-d-glucose-d-glycerate with a kcat = 2.1 s-1, Km = 69 µM, and kcat/ Km = 3.1 × 104 M-1 s-1.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/química , Glucosiltransferases/química , Glucosiltransferases/genética , Porinas/química , Proteínas da Membrana Bacteriana Externa/genética , Catálise , Dissacarídeos/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glucose/química , Glucosiltransferases/classificação , Cinética , Lipopolissacarídeos/química , Manosefosfatos/química , Porinas/genética , Especificidade por Substrato , Ácidos Teicoicos/química
18.
Biochemistry ; 57(12): 1842-1846, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29513982

RESUMO

The phosphotriesterase from Sphingobium sp. TCM1 ( Sb-PTE) is notable for its ability to hydrolyze organophosphates that are not substrates for other enzymes. In an attempt to determine the catalytic properties of Sb-PTE for hydrolysis of chiral phosphotriesters, we discovered that multiple phosphodiester products are formed from a single substrate. For example, Sb-PTE catalyzes the hydrolysis of the RP-enantiomer of methyl cyclohexyl p-nitrophenyl phosphate with exclusive formation of methyl cyclohexyl phosphate. However, the enzyme catalyzes hydrolysis of the SP-enantiomer of this substrate to an equal mixture of methyl cyclohexyl phosphate and cyclohexyl p-nitrophenyl phosphate products. The ability of this enzyme to catalyze the hydrolysis of a methyl ester at the same rate as the hydrolysis of a p-nitrophenyl ester contained within the same substrate is remarkable. The overall scope of the stereoselective properties of this enzyme is addressed with a library of chiral and prochiral substrates.


Assuntos
Proteínas de Bactérias/química , Organofosfonatos/química , Diester Fosfórico Hidrolases/química , Sphingomonadaceae/enzimologia , Catálise , Hidrólise
19.
J Am Chem Soc ; 139(28): 9463-9466, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28650156

RESUMO

Bacterial capsular polysaccharides (CPS) are complex carbohydrate structures that play a role in the overall fitness of the organism. Campylobacter jejuni, known for being a major cause of bacterial gastroenteritis worldwide, produces a CPS with a unique O-methyl phosphoramidate (MeOPN) modification on specific sugar residues. The formation of P-N bonds in nature is relatively rare, and the pathway for the assembly of the phosphoramidate moiety in the CPS of C. jejuni is unknown. In this investigation we discovered that the initial transformation in the biosynthetic pathway for the MeOPN modification of the CPS involves the direct phosphorylation of the amide nitrogen of l-glutamine with ATP by the catalytic activity of Cj1418. The other two products are AMP and inorganic phosphate. The l-glutamine-phosphate product was characterized using 31P NMR spectroscopy and mass spectrometry. We suggest that this newly discovered enzyme be named l-glutamine kinase.


Assuntos
Amidas/metabolismo , Cápsulas Bacterianas/metabolismo , Campylobacter jejuni/enzimologia , Glutamina/metabolismo , Ácidos Fosfóricos/metabolismo , Fosfotransferases/metabolismo , Polissacarídeos Bacterianos/metabolismo , Amidas/química , Cápsulas Bacterianas/química , Campylobacter jejuni/química , Campylobacter jejuni/metabolismo , Glutamina/química , Humanos , Conformação Molecular , Ácidos Fosfóricos/química , Fosfotransferases/química , Polissacarídeos Bacterianos/química
20.
Biochemistry ; 53(28): 4727-38, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24955762

RESUMO

A novel lactonase from Mycoplasma synoviae 53 (MS53_0025) and Mycoplasma agalactiae PG2 (MAG_6390) was characterized by protein structure determination, molecular docking, gene context analysis, and library screening. The crystal structure of MS53_0025 was determined to a resolution of 2.06 Å. This protein adopts a typical amidohydrolase (ß/α)8-fold and contains a binuclear zinc center located at the C-terminal end of the ß-barrel. A phosphate molecule was bound in the active site and hydrogen bonds to Lys217, Lys244, Tyr245, Arg275, and Tyr278. Both docking and gene context analysis were used to narrow the theoretical substrate profile of the enzyme, thus directing empirical screening to identify that MS53_0025 and MAG_6390 catalyze the hydrolysis of d-xylono-1,4-lactone-5-phosphate (2) with kcat/Km values of 4.7 × 10(4) and 5.7 × 10(4) M(-1) s(-1) and l-arabino-1,4-lactone-5-phosphate (7) with kcat/Km values of 1.3 × 10(4) and 2.2 × 10(4) M(-1) s(-1), respectively. The identification of the substrate profile of these two phospho-furanose lactonases emerged only when all methods were integrated and therefore provides a blueprint for future substrate identification of highly related amidohydrolase superfamily members.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Lactonas/química , Simulação de Acoplamento Molecular , Mycoplasma synoviae/enzimologia , Fosfatos Açúcares/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Lactonas/metabolismo , Mycoplasma synoviae/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fosfatos Açúcares/genética , Fosfatos Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...